2.5

Proving Statements about Segments and AnglesFor use with Exploration 2.5

Essential Question How can you prove a mathematical statement?

A **proof** is a logical argument that uses deductive reasoning to show that a statement is true.

1 **EXPLORATION:** Writing Reasons in a Proof

Work with a partner. Four steps of a proof are shown. Write the reasons for each statement.

Given
$$AC = AB + AB$$

Prove
$$AB = BC$$

STATEMENTS	REASONS			
$1. \ AC = AB + AB$	1. Given			
2. AB + BC = AC	2. <u>pagarnemontasegrappeontasector</u>			
3. AB + AB = AB + BC	3. Transitive Property of Equality			
4. AB = BC	4. Subtraction Property of Equality			

EXPLORATION: Writing Steps in a Proof

Work with a partner. Six steps of a proof are shown. Complete the statements that correspond to each reason.

Given
$$m \angle 1 = m \angle 3$$

Prove $m\angle EBA = m\angle CBD$

Name_____ Date_____

2.5 Proving Statements about Segments and Angles (continued)

EXPLORATION: Writing Steps in a Proof (continued)

ST	STATEMENTS		REASONS	
1.	mL1 = mL3	1.	Given	
2.	$m\angle EBA = m\angle 2 + m\angle 3$	2.	Angle Addition Postulate (Post. 1.4)	
3.	$m\angle EBA = m\angle 2 + m\angle 1$	3.	Substitution Property of Equality	
4.	$m\angle EBA = m\angle + m\angle 2 $	4.	Commutative Property of Addition	
5.	$m\angle 1 + m\angle 2 = \underline{m \angle CBD}$	5.	Angle Addition Postulate (Post. 1.4)	
6.	mLEBA = MLCBD	6.	Transitive Property of Equality	

Communicate Your Answer

3. How can you prove a mathematical statement?

You can use deductive reasoning to make statements about a given situation to use math definitions, postulates, and theorems as yours reason or justification for each statement.

4. Use the given information and the figure to write a proof for the statement.

Given B is the midpoint of \overline{AC} . C is the midpoint of \overline{BD} .

Prove AB = CD

2.5 No

Notetaking with Vocabulary (continued)

Core Concepts

Writing a Two-Column Proof

In a proof, you make one statement at a time until you reach the conclusion. Because you make statements based on facts, you are using deductive reasoning. Usually the first statement-and-reason pair you write is given information.

Proof of the Symmetric Property of Angle Congruence

Given $\angle 1 \cong \angle 2$

Prove $\angle 2 \cong \angle 1$

Copy or draw diagrams and label given information to help develop proofs. Do not mark or label the information in the Prove statement on the diagram.

Notes:

Extra Practice

In Exercises 1 and 2, complete the proof.

1. Given Line k and line ℓ bisect each other at point M and $\overline{BM} \cong \overline{CM}$.

Prove
$$AB = AM + DM$$

STATEMENTS	REASONS
1. $\overline{BM} \cong \overline{CM}$	1. Given
2. $\overline{CM} \cong \overline{DM}$	2. Def of segment bisector
3. $\overline{BM} \cong \overline{DM}$	3. Transitive Property of Equality
4. BM = DM	4. Definition of congruent segments
5. AB= AM+BM	5. Segment Addition Postulate (Post. 1.2)
$6. \ AB = AM + DM$	6. Substitution Property of Equality

2.5 Notetaking with Vocabulary (continued)

2. Given $\angle AEB$ is a complement of $\angle BEC$.

Prove $m \angle AED = 90^{\circ}$

STATEMENTS

1. $\angle AEB$ is a complement of $\angle BEC$.

3.
$$m\angle AEC = m\angle AEB + m\angle BEC$$

4.
$$m\angle AEC = 90^{\circ}$$

5.
$$m\angle AED + m\angle AEC = 180^{\circ}$$

7.
$$m\angle AED = 90^{\circ}$$

REASONS

- 1. Given
- 2. Definition of complementary angles

- 5. Definition of supplementary angles
- 6. Substitution Property of Equality
- Subtraction Property of Equality 7.

In Exercises 3 and 4, name the property that the statement illustrates.

3. If $\angle RST \cong \angle TSU$ and $\angle TSU \cong \angle VWX$, then $\angle RST \cong \angle VWX$.

Transitive Proporty of Angle Congruence (Thm 2.2)

4. If $\overline{GH} \cong \overline{JK}$, then $\overline{JK} \cong \overline{GH}$.

Symmetric Property of Segment Congruence (Thm 2.1)

5. Write a two-column proof.

Given M is the midpoint of RT.

Prove
$$MT = RS + SM$$

	_	_		
-	-	_	_	
	R	5	M	T

STATEMENTS

REASONS

- 1. Mis the midpoint of RT
- 2. RM = MT
- 3. RM= RS+SM
- 4. MT = RM
- 5. MT = RS+ SM

- 1. Given
- 2. Def of mydpoint
- 3. Segment
- 4. Symmetric Property of Segment Congruence
- 5. Substitution Property of Equality